Nanoparticles, a unique subset of the broad field of nanotechnology, include any type of particle with at least one dimension of less than 500 nanometers. Nanoparticles play an important role in a wide variety of fields including advanced materials, pharmaceuticals, and environmental detection and monitoring.
The atomic force microscope (AFM) is ideally suited for characterizing nanoparticles. It offers the capability of 3D visualization and both qualitative and quantitative information on many physical properties including size, morphology, surface texture and roughness. Statistical information, including size, surface area, and volume distributions, can be determined as well. A wide range of particle sizes can be characterized in the same scan, from 1 nanometer to 8 micrometers. In addition, the AFM can characterize nanoparticles in multiple mediums including ambient air, controlled environments, and even liquid dispersions.
The atomic force microscope (AFM) is ideally suited for characterizing nanoparticles. It offers the capability of 3D visualization and both qualitative and quantitative information on many physical properties including size, morphology, surface texture and roughness. Statistical information, including size, surface area, and volume distributions, can be determined as well. A wide range of particle sizes can be characterized in the same scan, from 1 nanometer to 8 micrometers. In addition, the AFM can characterize nanoparticles in multiple mediums including ambient air, controlled environments, and even liquid dispersions.
While nanoparticles are important in a diverse set of fields, they can generally be classified as one of two types: engineered or nonengineered. Engineered nanoparticles are intentionally designed and created with physical properties tailored to meet the needs of specific applications. They can be end products in and of themselves, as in the case of quantum dots or pharmaceutical drugs, or they can be components later incorporated into separate end products, such as carbon black in rubber products. Either way, the particle’s physical properties are extremely important to their performance and the performance of any product into which they are ultimately incorporated.
Nonengineered nanoparticles, on the other hand, are unintentionally generated or naturally produced, such as atmospheric nanoparticles created during combustion. With nonengineered nanoparticles, physical properties also play an important role as they determine whether or not ill effects will occur as a result of the presence of these particles. Depending on the application of interest, nanoparticles may be known by a number of alternative and trade-specific names, including particulate matter, aerosols, colloids, nanocomposites, nanopowders, and nanoceramics.
Nonengineered nanoparticles, on the other hand, are unintentionally generated or naturally produced, such as atmospheric nanoparticles created during combustion. With nonengineered nanoparticles, physical properties also play an important role as they determine whether or not ill effects will occur as a result of the presence of these particles. Depending on the application of interest, nanoparticles may be known by a number of alternative and trade-specific names, including particulate matter, aerosols, colloids, nanocomposites, nanopowders, and nanoceramics.
Qualitative Analysis
Using the AFM, individual particles and groups of particles can be resolved. Microscope images are essential in research and development projects and can be critical when troubleshooting quality control issues. The AFM offers visualization in three dimensions. Resolution in the vertical, or Z, axis is limited by the vibration environment of the instrument: whereas resolution in the horizontal, or X-Y, axis is limited by the diameter of tip utilized for scanning. Typically, AFM instruments have vertical resolutions of less than 0.1 nm and X-Y resolutions of around 1 nm. In material sensing mode, the AFM can distinguish between different materials, providing spatial distribution information on composite materials with otherwise uninformative topographies.
Quantitative Analysis
Software-based image processing of AFM data can generate quantitative information from individual nanoparticles and between groups of nanoparticles. For individual particles, size information (length, width, and height) and other physical properties (such as morphology and surface texture) can be measured. Statistics on groups of particles can also be measured through image analysis and data processing. Commonly desired ensemble statistics include particle counts, particle size distribution, surface area distribution and volume distribution. With knowledge of the material density, mass distribution can be easily calculated. Whenever data from single-particle techniques is processed to provide statistical information, the concern over statistical significance exists. It is easy to attain greater statistical significance in AFM by combining data from multiple scans to obtain information on the larger population.
Experimental Media
AFM can be performed in liquid or gas mediums. This capability can be very advantageous for nanoparticle characterization. For example, with combustion-generated nanoparticles, major component of the particles are volatile components that are only present in ambient conditions. Dry particles can be scanned in both ambient air and in controlled environments, such as nitrogen or argon gas. Liquid dispersions of particles can also be scanned, provided the dispersant is not corrosive to the probe tip and can be anchored to the substrate. Particles dispersed in a solid matrix can also be analyzed by topographical or material sensing scans of cross-sections of the composite material. Such a technique is useful for investigating spatial nanocomposites.
Size
In many industries, the ability to scan from the nanometer range into the micron range is important. With AFM, particles anywhere from 1nm to 5μm in height can be measured in a single scan. It is important to note that AFM scanning is done with a physical probe in either direct contact or near contact. Therefore, particles must be anchored to the sample surface during the scan. Multiple scans can be performed, however, to provide greater statistical accuracy.
Sample Preparation for AFM Nanoparticle Characterization
Nanoparticles typically fall into one of two categories when it comes to sample preparation. The first category is nanoparticles rigidly attached to a solid structure. The second category is nanoparticles with weak adhesion to the substrate, such as dispersions of nanoparticles in liquid or dry mediums. A good example of the first category is nanoparticles imbedded a solid matrix, as in the case of nanocomposites or nanoprecipitates3. In such cases, typically a cross-section of the composite material is scanned to determine such properties as average particle size and spatial distribution.
Examples of nanoparticles in the second category are quantum dots, diesel soot particles, carbon black, and colloidal suspensions.4 Sample preparation for the second category of nanoparticles involves the stable attachment of particles onto the substrate. Because the AFM works by scanning a mechanical probe across the sample surface, any structure being imaged must have greater affinity to the flat surface than to probe tip. When nanoparticles do accidentally attach to the probe, the resulting images typically show reduced resolution. Streaking will occur in the images if nanoparticles are not rigidly attached to the flat surface while scanning in contact mode. To avoid such artifacts, close contact mode (near contact) or CFM (crystal sensing) is strongly recommended for such samples.
No comments:
Post a Comment